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Biomembranes consisting of multiple lipids may involve phase separation phenomena
leading to coexisting domains of different lipid compositions. The modeling of such bio-
membranes involves an elastic or bending energy together with a line energy associated
with the phase interfaces. This leads to a free boundary problem for the phase interface
on the unknown equilibrium surface which minimizes an energy functional subject to vol-
ume and area constraints. In this paper we propose a new computational tool for comput-
ing equilibria based on an L2 relaxation flow for the total energy in which the line energy is
approximated by a surface Ginzburg–Landau phase field functional. The relaxation dynam-
ics couple a nonlinear fourth order geometric evolution equation of Willmore flow type for
the membrane with a surface Allen–Cahn equation describing the lateral decomposition. A
novel system is derived involving second order elliptic operators where the field variables
are the positions of material points of the surface, the mean curvature vector and the sur-
face phase field function. The resulting variational formulation uses H1 spaces, and we
employ triangulated surfaces and H1 conforming quadratic surface finite elements for
approximating solutions. Together with a semi-implicit time discretization of the evolution
equations an iterative scheme is obtained essentially requiring linear solvers only. Numer-
ical experiments are presented which exhibit convergence and the power of this new
method for two component geometric biomembranes by computing equilibria such as
dumbbells, discocytes and starfishes with lateral phase separation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Lipid bilayer membranes, in the following called biomembranes, are ubiquitous in living organisms as they form the
boundaries of cells and cell organelles, but also are of interest in the pharmaceutical industry which intends to use vesicles
for drug transport. The mechanics of the biomembranes are important in understanding cell shapes and their transitions
from one configuration to another [36]. Established models of lipid bilayer membranes treat them as deformable inextensi-
ble fluid surfaces of infinitesimal thickness unable to sustain shear stress. This leads to postulating bending energy function-
als with the membrane strain energy depending on the curvature of the surface. Biomembranes exhibit an interesting variety
of shape transitions, i.e. the formation of buds, pearling and vesicle fission. Such phenomena have recently been observed in
multi-component giant unilamellar vesicles (GUVs) involving a separation into two phases [3,4].

In this paper we present a method for computing equilibrium shapes of vesicles formed by geometric biomembranes that
involve a lateral separation into two phases. We define a relaxation dynamics by means of a gradient flow of the membrane
energy, derive a variational formulation using a surface calculus summarized in the Appendix, and we employ H1 conforming
. All rights reserved.
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isoparametric quadratic surface finite elements in order to approximate solutions to the evolution equations. We consider
vesicles governed by energy
FðCÞ :¼ FW ðCÞ þ F cðCÞ þ FMðCÞ :¼
Z

C

kH

2
jHj2 þ

Z
c

�rþ kHa
8
ðm�m0Þ2 ð1:1Þ
and use the phase field approximationc
FðC; cÞ :¼ FWðCÞ þ FGLðC; cÞ þ FMðCÞ :¼
Z

C

kH

2
jHj2 þ

Z
C
r e

2
jrCcj2 þ 1
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� �
þ kHa

8
ðm�m0Þ2 ð1:2Þ
The membrane is modeled as a closed hypersurface C in R3. Its mean curvature is denoted by H (sum of the principal curva-
tures, hence twice the mean curvature in the notation of other articles), and the field c is an order parameter (or phase field)
defined on C that serves to distinguish the two possible intra-membrane phases. The equilibrium equations for critical points
of the energy as well as the parabolic evolution equations of the relaxation flow are a highly nonlinear fourth order partial
differential equation for the surface coupled to an Allen–Cahn partial differential equation on the surface for the phase field:
vm ¼ kH DCH þ jrCmj2H � 1
2

H2
� �

þ rerCc �rCc : rCm �
re
2
jrCcj2 þ r

e
WðcÞ

� �
H

þ kHa
4R
ðm�m0ÞðjrCmj2 � H2Þ � kV � ðkA þ kchðcÞÞH;

ex@�t c ¼ erDCc � r
e

W 0ðcÞ � kch0ðcÞ
where vm is the (scalar) normal velocity, m is the unit normal, @�t the material derivative, kV,kA, and kc are Lagrange multipliers
associated with constraints on enclosed volume and the areas of the two phases, and x > 0 is a kinetic coefficient. In general
these equations are impossible to solve analytically but some insight can be gained in the case of axisymmetric geometries
which lead to ordinary differential equations, see [31,32]. However in order to tackle non axisymmetric configurations and to
consider further generalizations of the model it is necessary develop numerical discretizations of the general problem and
this is the subject of this paper.

Let us first discuss the energy contributions and constraints:

� Bending energy and line energy
A classical model for the elastic bending energy of a single phase membrane is the Canham–Helfrich–Evans energy func-
tional [11,23,29] which in its simplest form reads
F CEHðCÞ :¼ FWðCÞ þ F KðCÞ :¼
Z

C

kH

2
H2 þ

Z
C

kGK: ð1:3Þ

Here K is the Gaussian curvature. The positive real numbers kH (bending rigidity) and kG (Gaussian bending rigidity) are
material dependent elasticity parameters. For kH ¼ 1;FW is known in differential geometry as the Willmore energy [40].
For simplicity we assume that the bending rigidities are the same in the two phases. By the Gauss–Bonnet theorem the
last term is a topological invariant. Since we will confine our study to simply closed vesicles we will neglect this energy
contribution.
Line tension is also observed at the phase interface leading to the following energy functional for a two component mem-
brane [31,32]:

X2

i¼1

FWðCiÞ þ F cðCÞ ¼
X2

i¼1

Z
Ci

kH

2
H2

 !
þ
Z

c
�r ð1:4Þ

where the membrane is composed of two smooth surfaces Ci with a common boundary c. Then �r denotes the energy
density of the excess free energy of the phase transition located on c. It is commonly assumed that the lipid bilayer struc-
ture of the membrane remains intact across the phase interface so that the whole surface C = C1 [ c [ C2 is at least of the
class C1.

� Bilayer area difference
If the lipid molecules are strongly suppressed from changing sides of the bilayer then also the density difference between
the bilayers is constant in equilibrium. This can be formulated as a condition on M :¼

R
C H. A common approach is not to

formulate this as a hard constraint but as a soft one in the form of a penalty term by adding an energy of the form
FMðCÞ :¼ kHa
8
ðm�m0Þ2; m :¼ M

R
¼ 1

R

Z
C

H ð1:5Þ

to the membrane energy where m0 is a given value and R a characteristic length scale (in fact R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCj=4p

p
is the radius of

a sphere with the same surface area as C), and a is a positive number. The factor akH sometimes is called the non-local
bending rigidity and the model with the thus augmented energy is called area-difference-elasticity model (we refer
to [36] Section 2.5.6 for a classification of commonly used models). Typically a � 1, yet we treat this dimensionless
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parameter rather as an independent parameter and in some simulations set it to zero, i.e. allowing the membrane to
instantaneously exchange sufficient material between the two bilayers so that there is no lipid density difference.

� Phase field line energy
As previously proposed in [1,37,39,33] we replace (or approximate) the line energy

R
C

�r by a Ginzburg–Landau free
energy of the form
FGLðC; cÞ :¼
Z

C
r e

2
jrCcj2 þ 1

e
WðcÞ

� �
ð1:6Þ

where c is a phase field function (order parameter) to distinguish the two phases,rC stands for the surface gradient, W is
a double-well potential and e a small length scale. The coefficient r is proportional to the line energy density �r with a
coefficient that depends on W. This double-well potential has two minima in the points c = ±1 so that c � 1 and
c � �1 in the two phases, whilst the phase interface c is replaced by a thin layer of a thickness scaling with e across which
c changes its value smoothly but quickly. For definiteness we take

WðcÞ ¼ 1
2
ð1� c2Þ2

which is the classical quartic double-well potential. The relation between line energy density and the coefficient in the
Ginzburg–Landau energy is then given by, [22],

�r ¼ 4
3
r ð1:7Þ

� Area and volume constraints
Contributions to the elastic energy by expansion or contraction (changing the density of the lipids in the layers) but also
by osmotic pressure may be several orders of magnitude larger than the energy contribution by bending, and such con-
tributions can be modeled with effective constraints on the surface areas of the two phases and the volume of the
enclosed domain (we refer to [36], Sec.2.4.4 for the physically relevant regime). Within the phase field methodology,
the constraints on the areas of the two phases naturally are replaced by a constraint on the total surface area jCj and
on an integral involving the order parameter which in the simplest case reads

R
C c.

Minima of the Willmore bending energy FW with constant kH = 1 are called Willmore surfaces [40,18]. Several computa-
tional methods based on the use of surface finite elements on triangulated surfaces have been proposed to approximate the
L2 gradient flow of curvature dependent bending energies with and without area and volume constraints [34,18,2,9]. Other
previous computational work include approaches on minimizing discrete versions of the membrane energy as in [30,8], the
shape parameterization method in [7], the phase field approach [5,?,?,16], and a finite element method with C1 elements
[24,33]. We refer to [13] for a survey of numerical methods for geometric evolution equations. The novelty of our approach
is the use of the phase field method on a moving hypersurface to deal with the line energy. We expect the mathematical and
computational methodologies developed in this paper to be useful in developing methods for other models involving higher
order surface energies and surface partial differential equations. Note that a fully three space dimensional phase field model
can be employed as in [5,6,15,16]. However this is much more computationally demanding, requiring the solution of a fourth
order PDE in three space dimensions in order to approximate the membrane surface. Grid adaptivity is mandatory, and there
is the need for a careful investigation of topics such as the relation between the phase field parameters used for capturing the
surface and the interface on the surface.

We observe the following about our method and the contributions of this paper:

� Avoidance of parameterizations: Our approach is intrinsic and does not require explicit formulae for parameterizations. It
relies on the well known formula
�DCx ¼ Hm ð1:8Þ

where DC is the Laplace–Beltrami operator, m the unit normal to the surface, and x:C ? C the identity map.
� Phase field approximation of line energy: Using a phase field approximation of the line energy results in the motion of dif-

fuse interfaces during the relaxation dynamics governed by an Allen–Cahn equation on the moving membrane surface. To
solve such a problem on a triangulated surface we employ the computational methods developed in [19,20].
� Variational formulation: We derive a new variational formulation and gradient flow dynamics for the surface energy (1.2)

and end up with a geometric evolution equation for the membrane surface coupled to partial differential equation on the
moving surface describing the phase separation similar to that of [21] where a curvature flow with forcing term for a sur-
face is coupled to a surface Cahn–Hilliard equation.
� Mixed method and avoidance of C1 elements: The second order operator splitting of the fourth order partial differential

equations for the membrane motion may be viewed as a mixed formulation. It allows the use of H1 conforming and C0

finite elements, and we can avoid C1 finite elements as employed in [33].
� Quadratic finite elements: Although linear isoparametric surface finite elements would be sufficient we have used qua-

dratic surface elements since approximating curvature and related geometric quantities is possible in better spaces,
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[27,28,14]. Approximating a smooth surface by parametric quadratic finite elements based on a polyhedral surface (1.8)
gives an approximation in L2 of the mean curvature [28]. It is also our experience that the meshes associated with the
quadratic finite elements maintained good quality during the evolution. We will introduce a mesh quality measure
and report on it in the last section.
� Iteration by semi-implicit time stepping: Local minimizers of the energy are found by relaxing appropriate initial shapes to

energetically favorable states. The governing equations consist of parabolic equations of second order for the phase sep-
aration and of fourth order for the membrane evolution where the latter one is split into two second order equations. In
the full discretization the terms to highest order are taken implicitly in time whereas lower order terms may be taken
explicitly in time so that the new iterates for the surface position x, the mean curvature vector H = Hm, and the order
parameter c are computed in each relaxation step as the solution to linear systems. The method combines techniques
of [18,19].
� Hard constraints and Newton iteration: The constraints on area, enclosed volume, and the order parameter integral are

effectively ensured by performing Newton iterations at every relaxation step.
� Convergence: We document numerical experiments which indicate convergence of the numerical scheme with respect to

the mesh size and the phase field interfacial thickness e.
� Quantitative results: We compare the energies of relaxed axisymmetric membrane shapes with data from [32]. But the

proposed method can also be used to explore the phase diagram of non-axisymmetric two-phase membranes. In this con-
text we report on some simulations with discocytes involving a lateral phase-separation.
� Software: For the implementation the finite-element software ALBERTA [35] has been employed as well as the software

UMFPACK [12] which is a direct solver for linear systems with sparse matrices.

The paper is organized as follows. In the next Section we present the equilibrium equations satisfied by critical points of
the energy functional (1.4) including the constraints and their approximation by the diffuse interface model based on (1.2).
Further, we formulate a relaxation dynamics via a gradient flow. In the Section after the surface finite elements are intro-
duced and the governing equations are discretized. We also present the solution algorithm for the emerging discrete prob-
lem. Finally, in Section four we describe the results of significant numerical experiments that demonstrate the effectivity of
the proposed method. In the Appendix we fix some notation and introduce concepts from differential geometry appropriate
for our needs.

2. Mathematical models for two phase biomembranes

2.1. Phase-field surfaces and constraints

We now consider the phase field model with the line energy FGL and define the objects on which we will set up the relax-
ation dynamics.

Definition 2.1 (Admissible phase field surface). An admissible phase field surface (C,c) for the membrane energy (1.2) is the
smooth boundary C of a bounded, simply connected open domain X � R3 such that C is diffeomorphic to the sphere
together with a smooth field c : C! R which is called an order parameter or phase field variable.

Most of the formulae presented in this section are valid for more general topologies of C which also are of practical
importance (see [36, Figs. 4 and 5]). Yet we later on report only on simulation results for spherical membranes which is
why restrict the analysis to this case.

As specified in the introduction we are interested in critical points (C,c) of Fð�; �Þ defined by (1.2) subject to side condi-
tions concerning the areas of the two phases and the volume of the enclosed domain. Let us denote the target value for the
enclosed volume jXj by V and the target values for the areas of the two membrane domains jCij by Ai, i = 1, 2. The fact that the
sphere minimizes the area enclosing a given volume leads to the natural requirement on the data {V,A1,A2} that
jCj ¼ A1 þ A2 P 4pð3V=4pÞ2=3 ð2:1Þ
where the right hand side is the area of the sphere enclosing the volume V.
To take the area constraints into account in the phase field model we consider the function
hðcÞ ¼
1 if 1 6 c;
1
2 cð3� c2Þ if � 1 < c < 1;
�1 if c 6 �1

8><>:

and impose a constraint on

R
C hðcÞ and on jCj. In fact, in the limit as e ? 0 one expects that

R
C hðcÞ ! jC1j � jC2j. Since we

want to preserve the areas of C1 and C2 in this limit, in the phase field approximation we preserve
R
C hðcÞ and jCj = jC1j + jC2j

instead. We remark that this approach has been successfully applied previously in the context of Allen–Cahn systems on flat
domains, cf. [25]. Denoting by Ai > 0 the prescribed surface areas of Ci, i = 1, 2 the constraint on the total area and on the
phase area difference read
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CAðC; cÞ ¼ 0; ð2:2Þ
CcðC; cÞ ¼ 0 ð2:3Þ
in terms of the functionals
CAðCÞ :¼ jCj � ðA1 þ A2Þ; CcðC; cÞ :¼
Z

C
hðcÞ � ðA1 � A2Þ:
The constraint Cc will be called mass constraint in the following with the notion behind that
R
C hðcÞ could correspond to some

kind of mass.
Let V > 0 be the prescribed enclosed volume. Defining the functional
CV ðCÞ :¼ jXj � V ¼ 1
3

Z
C

x � m � V
the volume constraint reads
CV ðCÞ ¼ 0 ð2:4Þ
2.2. Variations of surface functionals

In this subsection we consider smooth hypersurfaces C which are the boundary of a simply connected open set X � R3

and topologically are spheres. Given a smooth field w : C! R3 there is a s0 such that the sets
CðsÞ :¼ fxðsÞ :¼ xþ swðxÞ; x 2 Cg
have the same properties as C for all s 2 (�s0,s0).

Definition 2.2 (Variation of surface functionals). Let E ¼ EðCÞ be a surface functional and w : C! R3 be a deformation field.
The variation of E in C in direction w is defined by
hDEðCÞ;wi :¼ d
ds
EðCðsÞÞ

����
s¼0
Before we consider the variations of the individual functionals appearing in the membrane energy and constraints, we
state a helpful result which dates back to an idea of [18]. The variational curvature identity (A.3) which is the weak formu-
lation of (1.8) holds true on deformed surfaces C(s) and may be differentiated with respect to s in s = 0. This will turn out to
be useful when computing the variation of the (local and non-local) membrane energies.
Lemma 2.3 (Derivative of the variational curvature equation [18]). Let fzðsÞ : CðsÞ ! R3gs be such that @�szjs¼0 ¼ 0. Then
0 ¼ d
ds

Z
CðsÞ
�HðsÞ � zðsÞ þ rCðsÞxðsÞ : rCðsÞzðsÞ

 !�����
s¼0

¼
Z

C
�@�sH � z � H � zrC �w

þ
Z

C
rCz : rCwþrC � zrC �w� ðrCzÞT : rCw� PrCz : rCw ð2:5Þ
Proof. This lemma has been shown in [18]. For the readers convenience, we repeat the proof here. Applying (A.9) to the first
term of (A.3) and using @�sz ¼ 0 we obtain
d
ds

Z
CðsÞ

HðsÞ � zðsÞjs¼0 ¼
Z

C
@�sH � z þ H � zrC �w
For the second term of (A.3) we apply the Leibniz formula involving surface gradients (A.10):
d
ds

Z
CðsÞ
rCðsÞxðsÞ : rCðsÞzðsÞ

�����
s¼0

¼ d
ds

Z
CðsÞ

X
i

rCðsÞxiðsÞ � rCðsÞziðsÞ
�����
s¼0

¼
Z

C

X
i

rC@
�
sxi � rCzi þrCxi � rC@

�
szi þ

Z
C

X
i

rCxi � ðrC �w� 2DðwÞÞrCzi
and with the identities @�sx ¼ w (the time t is replaced by s and the deformation field w is the velocity field),
@�sz ¼ 0; rCx : rCz ¼ rC � z and (A.11) we get
¼
Z

C

X
i

ðrCwi � rCziÞ þ rCx : rCzrC �w�
X

i

ðrCxi � 2DðwÞrCziÞ

¼
Z

C
rCz : rCwþrC � zrC �w� ðrCzÞT : rCw� PrCz : rCw
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Taking both derived identities together we end up with (2.5). h

In a series of lemmas we now present the variations of several contributions to the energy functional.

Lemma 2.4 (Variation of the Willmore functional [18]). The variation of the bending energy functional is:
hDFWðCÞ;wi ¼
Z

C
� kH

2
jHj2rC �wþ kHrCH : rCwþ kHrC �HrC �w�

Z
C

kHðrCHÞT : rCwþ kHPrCH : rCw ð2:6Þ
Proof. Also this lemma has already been shown in [18]. Using (A.9) we see that
d
ds
FW ðCðsÞÞ

����
s¼0
¼
Z

C
kH@

�
sH � H þ kH

2
jHj2rC �w ð2:7Þ
We now employ Lemma 2.3 with a field z which for s = 0 coincides with H and, as required, fulfills @�szjs¼0 ¼ 0. From (2.5) we
obtain that
Z

C
@�sH �H ¼

Z
C
ð�jHj2rC �wþrCH : rCwÞ þ

Z
C
ðrC � HrC �w� ðrCHÞT : rCw� PrCH : rCwÞ
Multiplying with kH and replacing the first term in (2.7) we deduce (2.6). h
Remark 2.5. The formula for the variation of the bending energy FW usually reads
d
ds
FW ðCðsÞÞ

����
s¼0
¼ kH

Z
C
�DCH � jrCmj2H þ 1

2
H3

� �
m �w ð2:8Þ
see e.g. [40] for a derivation. In particular, only deformations in the normal direction have an impact on the bending energy,
which is clear since purely tangential deformations do not change the surface. With some lengthy calculations involving
integrations by parts one can deduce this from (2.6). For the numerics we will make use of the variational formulation
(2.6) but (2.8) is useful for the asymptotic analysis of the governing equations [22].
Lemma 2.6 (Variation of the non-local bending energy functional). The variation of the non-local bending energy functional is:
hDFMðCÞ;wi ¼
Z

C

kHa
8R
ðm�m0ÞðjrC � mj2 � jrCmj2Þm �w: ð2:9Þ
Proof. In order to compute the variation of the non-local bending energy (1.5) we first observe that
d
ds

Z
CðsÞ

HðsÞ � mðsÞ
�����
s¼0

¼
Z

C
@�sH � m þ H � @�sm þ H � m|ffl{zffl}

¼H¼rC �m

rC �w|fflfflffl{zfflfflffl}
¼rC �mw

ð2:10Þ
where we used (A.9) again. For the first term we employ Lemma 2.3 with a field z which for s = 0 coincides with m. In the
following calculation we use the symmetry of the tangential tensor rCm which, in particular, means that PrCm =
P(rCm)T = (rCm)T =rCm, and we further use that rCw = wrCm + m �rCw as well as (A.2).
Z

C
@�sH � m ¼

Z
C
�H � m|fflfflffl{zfflfflffl}
¼�H

rC �wþrCm : rCwþrC � m|fflfflffl{zfflfflffl}
¼H

rC �w�
Z

C
ðrCmÞT : rCwþ PrCm : rCw

¼ �
Z

C
rCm : ðwrCm þ m �rCwÞ ¼ �

Z
C
jrCmj2w
Recalling the identity (A.12) we have
H � @�sm ¼ �H � ðrCwÞTm ¼ �rCwH � m ¼ 0
since H points in the normal direction, so the second term in (2.10) vanishes. Altogether this gives
d
ds

Z
CðsÞ

HðsÞ � mðsÞ
�����
s¼0

¼
Z

C
�jrCmj2wþ jrC � mj2w ¼

Z
C
ð�jrCmj2 þ jrC � mj2Þm �w:
From this and since
d
ds
FMðCðsÞÞ

����
s¼0
¼ kHa

8R
ðm�m0Þ

d
ds

Z
CðsÞ

HðsÞ � mðsÞ
�����
s¼0
we conclude that (2.9) is true. h
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As is well known, the variation of the enclosed volume is the external unit normal and the variation of the surface area is
the mean curvature vector. This can also be deduced from the transport identity (A.9) with g = 1 for the area and g = 1 and C
replaced by X for the volume.

Lemma 2.7. Variation of the area and volume functionals). The variations of the volume and area constraint functional are:
hDCV ðCÞ;wi ¼
Z

C
m �w; ð2:11Þ

hDCAðCÞ;wi ¼
Z

C
H �w ¼ðA:3Þ

Z
C
rCx : rCw ð2:12Þ
2.3. Variations of phase field surface functionals

Given an admissible phase field surface, variations with respect to the surface are based on deformations which we will
restrict to the normal direction. But when deforming we have to say how the phase field variable defined on the surface
changes.

Definition 2.8. Admissible deformations of phase field surfaces). Given an admissible phase field surface (C,c), a smooth
normal vector field w ¼ wm : C! R3 and a smooth function g : C! R, the deformed admissible phase field surface (C(s),c(s))
in direction (w,g) for a small s 2 R is defined by
CðsÞ :¼ fxðsÞ :¼ xþ swðxÞmðxÞjx 2 Cg; ð2:13Þ
cðsÞ : CðsÞ ! R; cðs; xðsÞÞ :¼ cðxÞ þ sgðxÞ ð2:14Þ
Such a pair (w,g) is called admissible deformation field for an admissible phase field surface.
By the regularity assumptions on admissible phase field surfaces there is a small s0 > 0 so that (C(s),c(s)) indeed is admis-

sible for all s 2 (�s0,s0). In particular, for each point x(s) on C(s) there is a unique point x 2 C with x(s) = x + sw(x)m(x) so
that c(s) is well defined. Concerning the derivative of c(s) with respect to s we observe that
d
ds

cðs; xðsÞÞ
����
s¼0
¼ @scð0; xð0ÞÞ þ @sxð0Þ � rcð0; xð0ÞÞ ¼ @scð0; xÞ þwðxÞmðxÞ � rcðxÞ ¼ @�scðs; xðsÞÞjs¼0
where we employed the notation of Section A.2 with t replaced by the parameter s. On the other hand, from (2.14) we see
that d

ds cðs; xðsÞÞjs¼0 ¼ gðxÞ, whence
@�scðs; xðsÞÞjs¼0 ¼ @
�
scðs; xðsÞÞjs¼0 ¼ gðxÞ ð2:15Þ
In the case g = 0 this means that we extend the phase field constantly in the normal direction away from C in order to define
it on the deformed surface C(s).

Definition 2.9. Let E ¼ EðC; cÞ be a functional defined on admissible phase field surfaces, let (C,c) be an admissible surface
and let (w,g) be an admissible deformation field. The variation of E in (C,c) in direction (w,g) is defined by
hdEðC; cÞ; ðw;gÞi ¼ d
ds
EðCðsÞ; cðsÞÞ

����
s¼0
Remark 2.10. We will also be interested in variations of functionals that only depend on C but not on c, namely FW ;FM ; CA,
and CV . With a slight abuse of notation we will still write dFW etc. where we mean
hdFW ðCÞ; ðw;gÞi :¼ hDFWðCÞ;wmi ð2:16Þ
Lemma 2.11 (Variation of the Ginzburg–Landau energy functional). For an admissible phase field surface (C,c) with admissible
deformation field (w,g) we have that
hdFGLðC; cÞ; ðw;gÞi ¼
Z

C
r erCc � rCgþ

1
e

W 0ðcÞg
� �

�
Z

C
rerCc �rCc : rCmwþ

Z
C
r e

2
jrCcj2 þ 1

e
WðcÞ

� �
Hw;

ð2:17Þ

Proof. Thanks to (A.2)
rC �w ¼ rC � ðwmÞ ¼ wrC � m þrCw � m|fflfflfflfflffl{zfflfflfflfflffl}
¼0

¼ wH
Furthermore, using the symmetry of rCm again,
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2DðwÞ ¼ rCðwmÞ þ ðrCðwmÞÞT ¼ 2wrCm þrCw� m þ m �rCw
Applying (A.10) to the term involving rCc we obtain
d
ds

Z
CðsÞ

re
2
jrCðsÞcðsÞj2

�����
s¼0

¼
Z

C
rerCc � rC@

�
sc þ re

2
rCc � ðrC �w� 2DðwÞÞrCc

¼
Z

C
rerCc � rCgþ

re
2
jrCcj2Hw� rerCc �rCc : rCmw

�
Z

C

re
2
rCc � ðrCw� m þ m �rCwÞrCc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0sincerCc�m¼0
Similarly, applying (A.9) to the term with the double well potential we obtain
d
ds

Z
CðsÞ

r
e

WðcðsÞÞ
�����
s¼0

¼
Z

C

r
e

W 0ðcÞ@�sc þ r
e

WðcÞrC �w ¼
Z

C

r
e

W 0ðcÞgþWðcÞHw
Both together yields (2.17):
d
ds
FGLðCðsÞ; cðsÞÞ

����
s¼0
¼ r

Z
C
erCc � rCgþ

1
e

W 0ðcÞg� erCc �rCc : rCmwþ r
Z

C

e
2
jrCcj2 þ 1

e
WðcÞ

� �
Hw �
Lemma 2.12 (Variation of the mass constraint functional). For an admissible phase field surface (C, c) with admissible defor-
mation field (w,g) we have that
hdCcðC; cÞ; ðw;gÞi ¼
Z

C
h0ðcÞgþ hðcÞHw ð2:18Þ
Proof. We use (A.9), (2.15) and (A.2):
hdCcðC; cÞ; ðw;gÞi ¼
d

ds

Z
CðsÞ

hðcðsÞÞ
 !�����

s¼0

¼
Z

C
h0ðcÞ@�t c þ hðcÞrC � ðwmÞ ¼

Z
C

h0ðcÞgþ hðcÞHw
which is the desired formula. h
2.4. Critical points

2.4.1. Diffuse interface model
Definition 2.13 (Critical point, diffuse interface model). An admissible phase field surface (C,c) is a critical point of the diffuse
interface membrane energy (1.2) subject to constraints 2.2, 2.3 and 2.4 if
0 ¼ ðdFW þ dFGL þ dFM þ kVdCV þ kAdCA þ kcdCcÞðC; cÞ
where kV ,kA, and kc are appropriate Lagrange multipliers.
Using (2.8), (2.17), (2.9), (2.11), (2.12) and (2.18) and recalling (2.16) critical points have to fulfill.

Problem 2.14 (Diffuse interface equilibrium equations). For given values V, A1, A2 fulfilling (2.1) find an admissible phase field
surface (C,c) and Lagrange multipliers kV, kA, and kc such that
0 ¼ kH �DCH � jrCmj2H þ 1
2

H3
� �

� rerCc �rCc : rCm þ
re
2
jrCcj2 þ r

e
WðcÞ

� �
H

þ kHa
4R
ðm�m0ÞðH2 � jrCmj2Þ þ kV þ ðkA þ kchðcÞÞH; ð2:19Þ

0 ¼ �erDCc þ r
e

W 0ðcÞ þ kch0ðcÞ; ð2:20Þ

0 ¼ jXj � V ; 0 ¼ jCj � ðA1 þ A2Þ;0 ¼
Z

C
hðcÞ � ðA1 � A2Þ ð2:21Þ
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First equation (2.19) can be understood as a normal force balance whilst (2.20) is a kind of tangential force balance. This
will become more clear when comparing with the equilibrium equations in the sharp interface limit in Problem 2.16 below
which we provide some interpretation of equations. Remark 2.17 explains the relation between the above diffuse interface
problem and the sharp interface problem.
2.4.2. Sharp interface model
Definition 2.15 (Admissible two-phase surface). For the membrane energy (1.4) C is an admissible two-phase surface if it is the
boundary of a bounded, simply connected open domain X � R3 such that C is C1-diffeomorphic to the sphere and such that it
can be decomposed in the form C = C1 [ c [ C2 where

� C1 and C2 are two-dimensional smooth oriented not necessarily connected hypersurfaces with smooth boundaries that
coincide and correspond to c which consists of a finite number of smooth curves,
@C1 ¼ @C2 ¼ c;
� locally around each point x 2 c the surface C can be parameterized by a C1 map.

These regularity assumptions are consistent with the approach in [31,32,4]. The fact that the lipid bilayer is intact across
the phase interface motivates the assumption of a C1 surface (see the discussion in [31]).

For the admissible two-phase surface C = C1 [ c [C2 we denote by l the outer co-normal of C2, whence �l is the outer
co-normal of C1. We also use sc for the unit tangential vector field along c such that (sc,l,m) is positively oriented.

The Euler–Lagrange equations of the membrane energy (1.4) can be derived by deforming the surface C with a suitably
regular vector field. The calculation is carried out in [22] for more general energies.

Problem 2.16 (Sharp interface equilibrium equations). For given data {V,A1,A2} fulfilling (2.1) find an admissible two-phase
membrane C = C1 [ c [C2 and find Lagrange multipliers kV, kA,1, and kA,2 such that
0 ¼ kHð�DCi
HðiÞ � jrCi

mðiÞj2HðiÞ þ 1
2
ðHðiÞÞ3Þ þ kHa

4R
ðm�m0Þ ðHðiÞÞ2 � jrCi

mðiÞj2
� �

þ kV þ kA;iH on Ci; i ¼ 1;2; ð2:22Þ

0 ¼ kH½H	12 on c; ð2:23Þ
0 ¼ kH½rCH	12 � l� �rhm on c; ð2:24Þ
0 ¼ �rhg þ ðkA;2 � kA;1Þ on c; ð2:25Þ
0 ¼ jXj � V ; ð2:26Þ
0 ¼ jCij � Ai; i ¼ 1;2: ð2:27Þ
Eq. (2.22) can be considered as a force balance in points on the membrane where we emphasize that forces arising from
the bending energy and the constraints point in the normal direction so that we can formulate it as a scalar equation for the
normal components of the forces. The phase interface involves both a continuity condition (2.23) and a force balance which
is split into a component (2.25) tangential to C and normal to c and a component (2.24) normal to C. Since the Lagrange
multipliers are real numbers we see from (2.25) that equilibrium membrane shapes involve phase interfaces which all have
the same constant geodesic curvature.
Remark 2.17. It is shown in [22] by a formal asymptotic analysis that solutions to Problem 2.14 converge to solutions to
Problem 2.16 as e ? 0. Here, we confine ourselves to making a few remarks for readers that are familiar with this technique.

� Energetically favorable solutions to the Allen–Cahn equations involve large domains where c � ±1 which correspond to
the phases Ci in the sharp interface limit. With this in mind we see how (2.22) emerges from (2.19).
� These equations also allow us to identify kA,1 with kA + kc and kA,2 with kA � kc in the sharp interface limit, �? 0.
� The term eDCc � 1

e W 0ðcÞ converges to the geodesic curvature hg of the limiting curve c which allows us to recover (2.25)
from (2.20).
� The curvature terms in (2.23) and (2.24) arise from the expansion of the term DCH in (2.19) in the interfacial layer

between the phases. The normal component of curvature hm is obtained from the second line of (2.19) which to leading
order approximates 
 1

e
�rð�l � rCmlþ HÞ on c since rCc 
 1

e l there. Using the fact that (sc,l) is an orthonormal basis of
the tangent space on C we may write H =rC � m = l � rCml + sc � rCmsc and obtain hm by observing that sc � rCmsc = hm.
2.5. Relaxation dynamics and energy decay

We define a relaxation dynamics as a weighted L2 gradient flow of the membrane energy taking the constraints into ac-
count with Lagrange multipliers.
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Definition 2.18 (Weighted L2 product). Let (C,c) denote an admissible phase field surface and let x > 0 be a kinetic
coefficient. On the space of admissible deformation fields we consider the inner product
Mxððv ;vÞ; ðw;gÞ; ðC; cÞÞ :¼
Z

C
ðvwþ exvgÞ:
The kinetic coefficient x yields a time scale which may speed up or slow down the phase separation in comparison with the
membrane surface relaxation. We remark that we will end up with an Allen–Cahn equation for the order parameter c on the
evolving surface C which, with the � scaling of the kinetic coefficien,t will approximate a forced geodesic curvature flow for
the interphase line in the sharp interface limit. We chose it in analogy with the phase field approximation of mean curvature
flow in flat domains [13,25].

Problem 2.19 (Gradient flow). Suppose that data {V,A1,A2} fulfilling (2.1) and an initial admissible phase field surface (C0,c0)
are given such that
V ¼ jX0j ¼ 1
3

Z
C0

m0 � x0; A1 þ A2 ¼ jC0j; A1 � A2 ¼
Z

C0
hðc0Þ: ð2:28Þ
Find a family of admissible phase field surfaces {(C(t), cc(t))}t2[0,1) that satisfy (C(0),c(0)) = (C0,c0) and have the velocity
v(t) = vm(t)m(t) of C(t), and find functions kV ; kA; kc : ½0;1Þ ! R such that at each time t 2 [0,1)
MxððvmðtÞ; @�t cðtÞÞ; ðw;gÞ; ðCðtÞ; cðtÞÞÞ ð2:29Þ
¼ �hðdFW þ dFGL þ dFMÞðCðtÞ; cðtÞÞ; ðw;gÞi ð2:30Þ
� hðkV ðtÞdCV þ kAðtÞdCA þ kcðtÞdCcÞðCðtÞ; cðtÞÞ; ðw;gÞi ð2:31Þ
for all admissible deformations (w,g) of (C(t),c(t)), and such that at each time t 2 [0,1)
0 ¼ CV ðCðtÞ; cðtÞÞ; ð2:32Þ
0 ¼ CAðCðtÞ; cðtÞÞ; ð2:33Þ
0 ¼ CcðCðtÞ; cðtÞÞ: ð2:34Þ
Theorem 2.20. Suppose that {(C(t), c(t)),kV(t),kA(t),kc(t)}t is a solution to Problem 2.19. Then
d
dt
FðCðtÞ; cðtÞÞ ¼ �

Z
CðtÞ
ðjvmðtÞj2 þ exj@�t cðtÞj2Þ 6 0: ð2:35Þ
Proof. Thanks to the Lagrange multipliers the solution satisfies
0 ¼ d
dt
CV ðCðtÞ; cðtÞÞ ¼ hdCV ðCðtÞ; cðtÞÞ; ðvmðtÞ; @�t cðtÞÞi;

0 ¼ d
dt
CAðCðtÞ; cðtÞÞ ¼ hdCAðCðtÞ; cðtÞÞ; ðvmðtÞ; @�t cðtÞÞi;

0 ¼ d
dt
CcðCðtÞ; cðtÞÞ ¼ hdCcðCðtÞ; cðtÞÞ; ðvmðtÞ; @�t cðtÞÞi:
Therefore
d
dt
FðCðtÞ; cðtÞÞ ¼ hðdFW þ dFGL þ dFMÞðCðtÞ; cðtÞÞ; ðvmðtÞ; @�t cðtÞÞi

¼ hðdFW þ dFGL þ dFMþÞðCðtÞ; cðtÞÞ; ðvmðtÞ; @�t cðtÞÞi þ hðkV ðtÞdCV þ kAðtÞdCA

þ kcðtÞdCcÞðCðtÞ; cðtÞÞ; ðvmðtÞ; @�t cðtÞÞi
¼ �MxððvmðtÞ; @�t cðtÞÞ; ðvmðtÞ; @�t cðtÞÞ; ðCðtÞ; cðtÞÞÞ
from which the assertion follows. h
2.6. Relaxation flow

We now present the problem on which the numerical method will be based. Analytically, the L2 relaxation flow defined
below and the gradient flow dynamics in Problem 2.19 are equivalent since the right hand side of law (2.36) for the velocity
points into the normal direction.

Problem 2.21 (Strong form of relaxation flow). Suppose that data {V,A1,A2} fulfilling (2.1) and an initial admissible phase field
surface (C0,c0) are given such that (2.28) is satisfied. Find a family of admissible phase field surfaces {(C(t),c(t))}t2[0,1) with
(C(0),c(0)) = (C0,c0) and with velocity v(t) of C(t), and find functions kV ; kA; kc : ½0;1Þ ! R such that at all times t
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v ¼ kH DCH þ jrCmj2H � 1
2

H2
� �

m þ rerCc �rCc : rCmm �
re
2
jrCcj2 þ r

e
WðcÞ

� �
H

þ kHa
4R
ðm�m0ÞðjrCmj2 � H2Þm � kVm � ðkA þ kchðcÞÞH; ð2:36Þ
such that
ex@�t c ¼ erDCc � r
e

W 0ðcÞ � kch0ðcÞ; ð2:37Þ
and such that the constraints (2.32)–(2.34) are fulfilled.
In order to formulate the above flow it in a variational form appropriate for surface finite elements we introduce for future

convenience the following variational forms:
LsðC; g;/Þ :¼
Z

C
g/;

LðC; z;wÞ :¼
Z

C
z �w;

EsðC; g;/Þ ¼
Z

C
rCg � rC/;

EðC; z;wÞ ¼
Z

C
rCz : rCw;

RðC; z;wÞ ¼
Z

C
rC � zrC �w� ðrCzÞT : rCwþ PrCz : rCw;

DðC; z;wÞ ¼
Z

C

1
2
jzj2rC �w;

WðC; z;wÞ ¼ kHEðC; z;wÞ þ kHRðC; z;wÞ þ kHDðC; z;wÞ;

G1ðC;g;Q ;wÞ ¼
Z

C
�rerCg�rCg : Qm �w;

G2ðC;g; z;wÞ ¼
Z

C

re
2
jrCgj2 þ

r
e

WðgÞ
� �

ðz � mÞm �w

M1ðC; zÞ ¼ kHa
4R

1
R

Z
C

z � m �m0

� �
;

M2ðC; Q ;wÞ ¼
Z

C
jQ j2 � jtrðQÞj2
� �

m �w;

NðC; wÞ ¼
Z

C
m �w;
where g, / are scalar fields, w, z are vector-valued fields, and Q is a tensor-valued field on C.

Problem 2.22. Variational relaxation flowSuppose that data {V,A1,A2} fulfilling (2.1) and an initial admissible phase field
surface (C0,c0) are given such that (2.28) is satisfied. Find a family of admissible phase field surfaces {(C(t),c(t))}t2[0,1) with
(C(0),c(0)) = (C0,c0) and with velocity v(t) of C(t), and find functions kV ; kA; kc : ½0;1Þ ! R such that at all times t
LðC; v;wÞ ¼ �WðC; H;wÞ � G1ðC; c;rCm;wÞ � G2ðC; c;H;wÞ �M1ðC; HÞM2ðC;rCm;wÞ � kVNðC; wÞ
� kALðC; H;wÞ � kcLðC; hðcÞH;wÞ; ð2:38Þ

xeLsðC; @�t c;/Þ ¼ �erEsðC; c;/Þ � r
e
LsðC; W 0ðcÞ;/Þ � kcLsðC; h0ðcÞ;/Þ ð2:39Þ
for all test functions ðw;/Þ : CðtÞ ! R3 � R where the fields {H(t)}t are computed from (A.3) and such that the constraints
(2.32)–(2.34) are fulfilled.
3. Finite element approximation

We will use triangulated surfaces and surface finite elements in order to discretize the equations in Problem 2.22. For this
purpose we need an approximation to the Weingarten maprCm which is given in Definition 3.5. In Section 3.2 we then pres-
ent the spatial discretization and the fully discrete scheme in Definition 3.11. After, we describe the procedures to update
surface, curvature and order parameter and state the solution algorithm.
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3.1. Isoparametric quadratic surface finite elements

The discretization is based on triangulated surfaces and isoparametric surface finite elements. We refer to [27,10,14] for
facts and results on such elements.

Definition 3.1 (Triangulated surface). A triangulated polyhedral surface eCh is a polyhedron with planar triangular faces,
eCh ¼
[
eT2eT h

eT ;

where eT h consists of a finite number of closed, non-degenerate triangles eT such that the intersection of two different trian-
gles is either empty or a common edge or a common vertex and such that each triangle has at least one edge in common with
another triangle.

Given a triangulated polyhedral surface eCh, a quadratic triangulated surface Ch over eCh is of the form
Ch ¼
[

T2T h

T;
where there exists a homeomorphism F : eCh ! Ch such that

� for each T 2 T h there is a eT 2 eT h with T ¼ FðeT Þ,
� FjeT is a quadratic polynomial on each eT 2 eT h,

� F leaves vertices unchanged.
It follows that each triangle T 2 T h can be parameterized by a quadratic polynomial UT : bT ! T where bT :¼
fk 2 R3jki P 0;

P
iki ¼ 1g is a fixed reference triangle. Denoting the space of polynomials of degree two by P2ð�Þwe have that

UT 2 P2ðbT Þ.
Definition 3.2. Isoparametric quadratic surface FE space Given a quadratic triangulated surface Ch, the isoparametric
quadratic surface finite element space is defined by
ShðChÞ :¼ f/ 2 C0ðChÞj/jT �UT 2 P2ðbT Þ on each T 2 T hg: ð3:1Þ
For discrete versions of three-dimensional fields such as, for example, the field H ¼ fHkg3
k¼1 we introduce the finite ele-

ment space ShðChÞ :¼ S3
hðChÞ. We remark that the finite elements are isoparametric since the map F in Definition 3.1 belongs

to Sh. The matrix Ph ¼ I � mh � mh ¼ rCh
xh stands for the projection onto the tangential space of Ch and is well-defined at

each point in the interior of a triangle T 2 T h.
The nodal variables are the evaluations at the vertices and at the midpoints of the edges whose coordinates are denoted

fxigNh
i¼1. Thus Nh is the dimension of Sh. We denote the standard basis by f/ig

Nh
i¼1 characterized by /i(xj) = dij with dij being the

Kronecker symbol. Elements fh 2 Sh can uniquely be written in the form fhðxÞ ¼
P

ifi/iðxÞ with coefficients fi = fh(xi). We
introduce the notation f ¼ ðfiÞNh

i¼1 for the coefficient vector. The standard basis of S3
h is f/iekgNh ;3

i;k¼1 where ek ¼ fdkjg3
j¼1. We will

employ the notation H ¼ fHi;kgNh ;3
i;k¼1 where Hi,k = Hh(xi) � ek.

Some of the functionals stated below involve the nonlinearities W(�) and h(�) and derivatives which are polynomials as
long as �1 6 ch 6 1. To compute the integrals we chose quadrature formulas that are exact for these polynomials.

Definition 3.3 (Discrete admissible phase field surface ). A discrete admissible phase field surface (Ch,ch) is a quadratic
triangulated surface Ch of spherical topology that encloses a bounded, simply connected open domain Xh together with a
scalar field ch 2 Sh(Ch). For such discrete admissible phase field surfaces we denote the external unit normal of the enclosed
Xh by mh and the identity on Ch by xh.

It is convenient to generalize (A.3) to triangulated surfaces in order to define a finite element function representing the
curvature on Ch:

Definition 3.4 (Discrete variational curvature equation). For a discrete admissible phase field surface (Ch,ch) the discrete mean
curvature vector Hh 2 Sh(Ch) is defined via
LðCh; Hh;whÞ � EðCh; xh;whÞ ¼ 0 ð3:2Þ
which has to hold for all wh 2 Sh(Ch).
Formula (A.4) applied to the unit normal m on an admissible phase field surface yields
Z

C
rCm : Z þ m � ðrC � ZÞ ¼

Z
C
rC � ðZTmÞ ¼

Z
C
ðZTmÞ � H
for any smooth test function Z : C! R3�3 and motivates the following
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Definition 3.5 (Discrete Weingarten map). For a discrete admissible phase field surface (Ch,ch) with the discrete mean
curvature vector satisfying (3.2) the discrete Weingarten map Q h 2 S3�3

h ðChÞ is defined via
Z
Ch

Q h : Zh ¼ �
Z

Ch

ðrCh
� ZhÞ � mh þ

Z
Ch

mh � Hh : Zh ð3:3Þ
for all tensor-valued test fields Zh 2 S3�3
h ðChÞ.
Remark 3.6. The version (3.3) for the shape operator employed by us stems from [27] and was shown in [28] to satisfy
k eQ h �rCmkL2ðCÞ ¼ OðhÞ
(where eQ h is an appropriate lift of Qh from Ch to C, see [28] for the details) provided that the sufficiently smooth limiting
surface C is interpolated by the triangulated surfaces Ch, i.e., vertices and edge-midpoints are projected to C. Furthermore,
numerical experiments indicate that this convergence also holds true in L1(C). We remark that for such convergence results
we need quadratic finite elements and linear finite elements are not sufficient. Another possibility for approximating the
shape operator is to compute rCh

mh on (more precisely, in the interior of) every T 2 T h. As shown in [14] this converges
to rCm in L2 and L1 linearly in h for quadratic (but not for linear) elements where again C is the known smooth limit of
the surfaces Ch obtained by interpolation.
3.2. Discrete problems

3.2.1. Discretization in space
For dynamic problems we will consider families of triangulated surfaces {Ch(t)}t2I where each Ch(t) has the above prop-

erties and the nodes xi(t) depend smoothly on the relaxation time t. The velocity
vhðt; xÞ :¼
X

i

@txiðtÞ/iðt; xÞ ð3:4Þ
is an element of Sh(Ch(t)) and is tacitly taken into account in the operator @�t whenever working on a triangulated surface. We
remark that (see [19])
@�t /i ¼ ð@t þ vh � rÞ/i ¼ 0 8i ¼ 1; . . . ;Nh: ð3:5Þ
Also the other t-dependent surface fields will become families of finite element functions as, e.g., {Hh(t)}t where the t depen-
dence concerns the coefficient vector H(t) but also the basis functions ek/i(t, �) of Sh(Ch(t)).

Definition 3.7. Let {Ch(t),c(t)}t2I be an evolving discrete admissible phase field surface for which Hh(t) and Qh(t) denote the
discrete mean curvature vector and Weingarten map equation at each t 2 I, respectively. Further, let ðkh

V ; k
h
A; k

h
c Þ : I ! R3. The

following variational equations are defined at each time t 2 I.
The discrete variational surface equation reads
LðCh; vh;whÞ ¼ �WðCh; Hh;whÞ � G1ðCh; ch;Q h;whÞ � G2ðCh; ch;Hh;whÞ �M1ðCh; HhÞM2ðCh; Q h;whÞ

� kh
VNðCh; whÞ � kh

ALðCh; Hh;whÞ � kh
cLðCh; hðchÞHh;whÞ ð3:6Þ
for a test vector field wh 2 Sh(Ch).
The discrete variational phase field equation is defined by
xeLsðCh; @�t ch;/hÞ ¼ �erEsðCh; ch;/hÞ �
r
e
LsðCh; W 0ðchÞ;/hÞ � kh

cLsðCh; h0ðchÞ;/hÞ ð3:7Þ
for a scalar test function /h 2 Sh(Ch).
The discrete constraint equations are
0 ¼ Ch
V ðChÞ ¼

1
3
NðCh; xhÞ � V ; ð3:8Þ

0 ¼ Ch
AðChÞ ¼

1
2
EðCh; xh; xhÞ � ðA1 þ A2Þ; ð3:9Þ

0 ¼ Ch
c ðCh; chÞ ¼ LsðCh; hðchÞ;1Þ � ðA1 � A2Þ: ð3:10Þ
Remark 3.8. In the above recall that the velocity has the nodal values vi,k(t) = @txi,k(t), and by the transport property of the
basis functions (3.5) we see that
@�t ch ¼
X

i

@�t ðci/iÞ ¼
X

i

@�t ci/i þ ci@
�
t /i ¼

X
i

@tci/i:
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Remark 3.9. Deforming Ch by a field wh 2 Sh(Ch) yields quadratic triangulated surfaces again. Variations of the constraints
(3.8) and (3.9) based on such deformations read similar as in the continuous setting (see Lemma 2.7):
hdCh
V ðChÞ;whi ¼ N ðCh; whÞ; ð3:11Þ

hdCh
AðChÞ;whi ¼ EðCh; xh;whÞ ¼ LðCh; Hh;whÞ: ð3:12Þ
Problem 3.10 (Semi-discrete variational relaxation flow). Suppose that data {V,A1,A2} fulfilling (2.1) and a discrete admissible
phase field surface ðC0

h; c
0
hÞ are given such that
V ¼ jX0
hj; A1 þ A2 ¼ jC0

hj; A1 � A2 ¼ LsðCh; hðc0
hÞ;1Þ: ð3:13Þ
Find a family of discrete admissible phase field surfaces {(Ch(t),c(t))}t2I with ðChð0Þ; chð0ÞÞ :¼ ðC0
h; c

0
hÞ and find functions

kV ;h; kA;h; kc;h : ½0;1Þ ! R such that the discrete surface, phase field and constraint Eqs. (3.6)–(3.10) are fulfilled at each time
t 2 I where the fields {Hh(t)}t and {Qh(t)}t are computed from (3.2) and (3.3), respectively.
3.2.2. Full discretization
In order to discretize in time we consider times ftmgm2N with tm 2 [0,1), tm > tm�1, and tm ?1 as m ?1 and set

sm := tm+1 � tm for the time steps. Quantities at time tm are denoted with an upper index m. At any time level m the surface
Cm

h is given by knowledge of xm
h , the vertices of the triangulation. On each surface Cm

h we define the fields eHm
h 2 ShðCm

h Þ and
Q m

h 2 S3�3
h ðCm

h Þ by (3.2) and (3.3), respectively, i.e.
LðCm
h ; eHm

h ;whÞ ¼ EðCm
h ; xm

h ;whÞ ð3:14Þ
for all wh 2 ShðCm
h Þ and
Z

Cm
h

Q m
h : Zh ¼

Z
Cm

h

�ðrCh
� ZhÞ � mm

h þ mm
h � eHm

h : Zh

� �
ð3:15Þ
for all tensor-valued test fields Zh 2 S3�3
h ðChÞ. For notational convenience we set (for wh 2 ShðCm

h Þ)
ZmðwhÞ ¼ �kHRðCm
h ; eHm

h ;whÞ � kHDðCh; eHm
h ;whÞ � G1 Cm

h ; cm
h ;Q

m
h ;wh

	 

� G2ðCm

h ; cm
h ;
eHm

h ;whÞ

�M1ðCm
h ; eHm

h ÞM2ðCm
h ; mm

h ;Q
m
h ;whÞ � kh;m

c LðC
m
h ; hðcm

h ÞeHm
h ;whÞ: ð3:16Þ
To step from a time level to the next one we decouple the computation of the surface from that of the order parameter.

Definition 3.11 (Fully discrete scheme). Assume that an initial discrete admissible phase field surface ðC0
h; c

0
hÞ is given such

that (3.13) holds for data {V,A1,A2} fulfilling (2.1). Set k0
c;h ¼ 0. The fully discrete scheme consists of computing discrete

admissible phase field surfaces ðCm
h ; c

m
h Þ subsequently for m = 0,1,2, . . . as follows:

1. Fully discrete evolution of the surface: Given a discrete admissible phase field surface ðCm
h ; c

m
h Þ at time tm, the field

xmþ1
h 2 ShðCm

h Þ defining the surface Cmþ1
h , the discrete mean curvature vector Hmþ1

h 2 ShðCm
h Þ and the Lagrange multipliers

kh;mþ1
V and kh;mþ1

A at time tm+1 are obtained from the equations
L Cm
h ;

xmþ1
h � xm

h

sm
;wh

� �
þ kHEðCm

h ; Hmþ1
h ;whÞ þ kh;mþ1

V NðCm
h ; whÞ þ kh;mþ1

A LðCm
h ; eHm

h ;whÞ ¼ ZmðwhÞ; ð3:17Þ

LðCm
h ; Hmþ1

h ; fhÞ � EðCm
h ; xmþ1

h ; fhÞ ¼ 0; ð3:18Þ
Ch

V ðC
mþ1
h Þ ¼ 0; ð3:19Þ

Ch
AðC

mþ1
h Þ ¼ 0; ð3:20Þ
where (3.17) and (3.18) have to hold for all vector fields wh; fh 2 ShðCm
h Þ.

2. Fully discrete evolution of the phase field: Given a discrete admissible phase field surface ðCm
h ; c

m
h Þ at time tm and a sur-

face Cmþ1
h at time tm+1 the field cmþ1

h 2 ShðCm
h Þ and the Lagrange multiplier kh;mþ1

c are obtained from

xeLs Cmþ1
h ;

cmþ1
h � ~cm

h

sm
;/h

� �
þ erEsðCmþ1

h ; cmþ1
h ;/hÞ þ kh;mþ1

c LsðCmþ1
h ; h0ðcm

h Þ;/hÞ ¼
r
e
LsðCmþ1

h ; W 0ðcm
h Þ;/hÞ; ð3:21Þ

Ch
c ðC

mþ1
h ; cmþ1

h Þ ¼ 0; ð3:22Þ

where (3.21) has to hold for all /h 2 ShðCmþ1
h Þ and where ~cm

h 2 ShðCmþ1
h Þ is defined by ~cm

h ðxÞ ¼
PNh

i¼1cm
i /mþ1

i ðxÞ.
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3.3. Solution algorithm
Let us denote the mass and the stiffness matrix by
M :¼ ðMijÞNh
i;j¼1;Mij :¼

Z
Ch

/i/j; A :¼ ðAijÞNh
i;j¼1; Aij :¼

Z
Ch

rCh
/i � rCh

/j
and their 3 � 3 block versions by M ¼ ðdklMÞ3k;l¼1 and A ¼ ðdklAÞ3k;l¼1.

3.3.1. Iterative procedure for the surface
The surface update step consisting of (3.17) and (3.18) from time level m to m + 1 in Scheme 3.11 may be written in ma-

trix–vector form as
1
sm Mm kHAm

�Am Mm

 !
xmþ1

Hmþ1

 !
¼

1
sm Mmxm þ zm

0

 !
� kmþ1

V ;h

nm

0

� �
� kmþ1

A;h

km

0

� �

where
zm
h 2 ShðCm

h Þ; zi;k ¼ Zmðek/iÞ;
nm

h 2 ShðCm
h Þ; ni;k ¼ NðCm

h ; ek/iÞ;

km
h 2 ShðCm

h Þ; ki;k ¼ LðCm
h ; eHm

h ; ek/iÞ ¼
ð3:14Þ EðCm

h ; xm
h ; ek/iÞ:

ð3:23Þ
Thus setting
Im :¼
1
sm Mm kHAm

�Am Mm

 !

and then defining
ðImÞ�1 nm

0

� �
¼: qm ¼

qm
1

qm
2

 !
; ðImÞ�1 km

0

� �
¼: sm ¼

sm
1

sm
2

� �
:

we have
xmþ1

Hmþ1

 !
¼ ðImÞ�1

1
sm Mmxm þ rm

0

 !
� kh;mþ1

V qm � kh;mþ1
A sm: ð3:24Þ
In view of the constraints (3.19) and (3.20) we may write
0 ¼ f ðkmþ1Þ :¼
Ch

V ðC
mþ1
h ðkmþ1ÞÞ

Ch
AðC

mþ1
h ðkmþ1ÞÞ

 !

where kmþ1 ¼ ðkh;mþ1

V ; kh;mþ1
A Þ. This is solved by a Newton method for which we need the derivative of f. We see from (3.24)

that a change in kh;mþ1
V corresponds to a deformation of Cmþ1

h ðkÞ in the direction �qm
1;h which is the finite element function

associated with the vector �qm
1 . The partial derivative of f with respect to kh;mþ1

V therefore corresponds to the variation of
Ch

V and Ch
A in direction �qm

h . The treatment of the derivatives with respect to kh;mþ1
A is similar. In view of the formulae

(3.11), (3.12) and the definitions of n and k we obtain
Df ðkmþ1Þ ¼
@kV C

h
V ðC

mþ1
h ðkmþ1ÞÞ @kA

Ch
V ðC

mþ1
h ðkmþ1ÞÞ

@kV C
h
AðC

mþ1
h ðkmþ1ÞÞ @kA

Ch
AðC

mþ1
h ðkmþ1ÞÞ

 !
¼ �

nmþ1 � qm
1 nmþ1 � sm

1

kmþ1 � qm
1 kmþ1 � sm

1

 !
:

We perform an iteration of the form
kmþ1;kþ1 ¼ kmþ1;k � ðDf ðkmþ1;kÞÞ�1f ðkmþ1;kÞ ð3:25Þ
to compute the values km+1. The values km+1,0 = km, k0,0 = 0 are taken as initial choice. The iteration is stopped if the values
CV ðCmþ1ðkmþ1;kþ1ÞÞ=V and CAðCmþ1ðkmþ1;kþ1ÞÞ=ðA1 þ A2Þ are reduced below a given tolerance. In our simulations we chose
10�12 as tolerance and observed that usually only a few Newton iteration steps were necessary to achieve the desired accu-
racy. Damping has never been required to ensure convergence.

3.3.2. Iterative procedure for the phase field
With respect to the phase separation update step from time level m to m + 1 in the Scheme 3.11 we observe that Eq. (3.21)

may be written in the form
Rmþ1cmþ1 ¼ ex
sm

Mmþ1cm �wmþ1;m � kmþ1
c;h pmþ1;m;
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where Rmþ1 :¼ ex
sm Mmþ1 þ erAmþ1 and where the fields
wmþ1;m
h 2 ShðCmþ1

h Þ; wi ¼
r
e
LsðCmþ1

h ; W 0ðcm
h Þ;/iÞ;

pmþ1;m
h 2 ShðCmþ1

h Þ; pi ¼ LsðCmþ1
h ; h0ðcm

h Þ;/iÞ
are used.
Again we apply the Newton method to compute the Lagrange multiplier kmþ1

c;h so that the constraint (3.22) is satisfied at
time tm+1. The procedure is similar to the one described above and a detailed description therefore is omitted.

3.3.3. Algorithm
The proposed algorithm to compute the new membrane Cmþ1

h from Cm
h consists of (i) successively solving three linear sys-

tems for the matrix Im (recall (3.24)), performing the Newton iteration (3.25) which involves computing the new surface
Cmþ1

h and new curvature Hmþ1
h , (iii) solve the two linear systems (Rm+1)�1wm+1,m and (Rm+1)�1pm+1,m for the phase separation

equation, and (iv) perform the Newton iteration for the Lagrange multiplier kmþ1
c;h which involves computing the new order

parameter cmþ1
h .

The overall procedure as described above is summarized in Algorithm 1. Issues like stopping criteria and choice of the
time step are discussed in the section on the numerical simulations.

Algorithm 1. Membrane evolution with phase separation

input: Initial discrete admissible phase field surface ðC0
h; c

0
hÞ,

output: Relaxed discrete admissible phase field surface ðC �m
h ; c

�m
h Þ and discrete mean curvature vector H �m

h at some
(sufficiently large) time t �m > 0,
assemble M0 and A0 and its 3 � 3 diagonal block versions,
factories M0,
for m ¼ 0; . . . ; �m� 1 do

adapt the grid based on the given data and choose a time step sm,

assemble rm,nm,km,Im,

solve ðImÞ�1ð 1
sm Mmxm þ zm;0ÞT ; ðImÞ�1ðnm;0ÞT , and (Im)�1(km,0)T,

perform a Newton iteration for the Lagrange multipliers kmþ1
V ;h ; kmþ1

A;h and compute xm+1,Hm+1,

assemble wm+1,m,pm+1,m,Rm+1,Mm+1

solve ðRmþ1Þ�1 e
sm Mmþ1cm �wmþ1;m
� �

and (Rm+1)�1pm+1,m,

perform a Newton iteration for the Lagrange multiplier kmþ1
c;h and compute cm+1,

end for
Remark 3.12. The main computational cost in our simulations arose from solving the linear systems. Taking explicit choices
for the Lagrange multipliers would involve only two linear systems for (xm+1,Hm+1) and cm+1 (which could be written as one
big systems, of course). But for the system sizes in our simulations direct methods for factorizing the matrices were suitable
so that the cost for solving multiple systems instead of only two is small. Furthermore, by reordering the unknowns by the
coordinates, i.e. in the form
ðx;HÞmþ1 ! ðx1;1; . . . ; xNh ;1;H1;1; . . . ;HNh ;1; x1;2; . . . ;HNh ;2; x1;3; . . . ;HNh ;3Þ
mþ1
the matrix Im involves diagonal blocks of the form
1
sm Mm kHAm

�Am Mm

 !
;

and the off-diagonal blocks are zero, whence it is sufficient to factorize these blocks which are of size 2Nh. Setting r = 0, a = 0
and kH = 1 we end up having this property for Willmore flow. For comparison, the system size of the method in [2] for Will-
more flow is 4Nh. In [18], where our method for the bending energy stems from, more terms contained in R are taken into
account semi-implicitly in time, and as a consequence the off-diagonal blocks do not vanish any more so that a system of size
6Nh has to be solved in each time step.
Remark 3.13. When replacing eHm
h in (3.16) and, hence, in (3.23) by Hm

h we observed that the grid quality was gently
worse which motivates the choice of eHh there. Moreover, we then need no initial values for the curvature. Towards
the end of the relaxation the nodes essentially do not move any more so that the new curvature field Hmþ1

h practically
coincides with eHmþ1

h .
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Remark 3.14. Taking the term from the double-well potential and the mass constraint explicitly in time in the Allen–Cahn
equation, i.e., wm+1,m instead of wm+1,m+1, leads to a mild stability restriction on the time step of the form s [ e2/x. In the
simulations presented below we chose s 
 h2 and always had h [ e whenever computing problems involving a phase sep-
aration. Stability problems never occurred.
3.3.4. Adaptive local grid refinement

Algorithm 2. Marking Strategy for adaptive refinement

input: Triangulated surface Ch with order parameter ch and curvature vector Hh and marking strategy (Nin, Noff, NH),
output: A number f(T) 2 {�1,0,1} for each element T 2 T h indicating whether T has to be refined (f(T) = 1) or may be

coarsened (f(T) = �1),
for T 2 T h do
compute the diameter diam (T) of T,
find the maximal value Ic of jchj in the six nodes,
compute IH as the mean of the values of ffiffiffiffiffiffiffiffi

sH;h
p in the six nodes of T,

set f(T) = 0,
if Ic < 0.97 (i.e., if we are within the interfacial layer) then

if diam (T) > e/Nin or diam (T) > NH/IH then
set f(T) = 1,

else if diam (T) < e/(2Nin) and diam (T) < NH/(2IH) then
set f(T) = �1,

end if
else

(i.e., we are in the pure phase)
if diam (T) > e/Noff or diam (T) > NH/IH then

set f(T) = 1,
else if diam (T) < e/(2Noff) and diam (T) < NH/(2IH) then

set f(T) = �1.
end if

end if
end for

As the interfacial thickness parameter e becomes small it is desirable to adaptively refine the grid, mainly in the transition

regions of the order parameter but also in strongly curved regions. The finite element software ALBERTA [35] that we used for
implementing our scheme requires a marking function that provides a flag for each element indicating whether it has to be
refined (=bisected) or whether it may be coarsened. We want to ensure that the interfacial layers are resolved by the mesh but
also demand the strongly curved regions to contain sufficient numbers of nodes. For the latter ones we consider the quantity
sH :¼ jrCmj2 ¼ H2
1 þ H2

2 ¼ H2 � 2K;
i.e., the sum of the squares of the principal curvatures. The Gaussian curvature can be computed via
K ¼ detðI þrCmÞ � H � 1;
and as discussed in [28] the discrete analog
KhðxÞ ¼
XNh

i¼1

Ki/iðxÞ; Ki ¼ detðI þ Q hÞ � traceðQ hÞ � 1;
is a good approximation. Hence, we define the discrete version of sH by
sH;hðxÞ ¼
XNh

i¼1

sH;i/iðxÞ; sH;i ¼ jHij2 � 2Ki:
Our marking strategy consists of three positive numbers (Nin,Noff,NH) with the following meaning: The diameter of an ele-
ment in the interfacial layer shall be smaller than e/Nin, and if the element belongs to one of the bulk phases then the diam-
eter shall be smaller than e/Noff, and throughout the element diameter shall be smaller than NH/IH where IH is the arithmetic
mean of the values of

ffiffiffiffiffiffiffiffi
sH;h
p

in the nodes belonging to the element. Algorithm 2 carefully states when triangles are marked for
refinement or coarsening.

Remark 3.15. Clearly one could also have taken sH,i = j(Qh)ij2 as an approximation to the sum of the squares of the principal
curvature. We have not tried out other approaches since the refinement should be part of procedures to keep a good mesh
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property even in the case of large deformations. We leave a careful analysis of this issue and of improving the efficiency of
the above method for future research but note that applying it makes the computations significantly cheaper.

We performed an explicit mesh adaption strategy and executed the marking algorithm at the beginning of every third
time step followed by the mesh adaption. During the latter one the fields on the surface are interpolated and restricted to
obtain the values in the new nodes as described in [35]. Often, this leads to an increase of the total energy and, in particular,
the surface data are no longer consistent in the following sense: For a triangulated surface in (or close to) equilibrium Eq.
(3.2) is fulfilled and relates xh and Hh, and mesh adaptivity typically destroys this relation. But we observed that the system
quickly relaxes back and decreases the energy to the previous state. For this reason we perform a couple of time steps before
considering another mesh adaptation. We also observed that in the late stage of the simulation when the system has almost
relaxed mesh changes are no longer needed.

4. Numerical experiments

We first look at the pure Helfrich flow (no phase separation) before discussing convergence in h and e in Section 4.3. In
subsequent sections we investigate the consistency of our results with the phase diagram for axisymmetric shapes (Section
4.5), effects due to the area-difference term FM in (1.2), we study non axisymmetric two-phase membranes (Section 4.7) and
a situation that can involve a topological change of the phases (Section 4.8).

4.1. Monitored quantities

To measure the discrete energy we compute
F h ¼ F h
W þ F h

GL þ F h
M ¼ kH

Z
Ch

1
2
jHhj2 þ r

Z
Ch

e
2
jrCh

chj2 þ
1
e

WðchÞ
� �

þ kHa
8

1
R

Z
Ch

Hh � mh �m0

 !2

:

Since the surface mesh is evolving we monitored the mesh quality. As one quality measure q(Ch) of the polyhedral surface Ch

we have used the minimal value of the sinus of the interior angles of the elements,
qðChÞ :¼minfqT jT 2 T ðChÞg; qT :¼minfsinðaÞja inner angle of Tg: ð4:1Þ
With inner angles we mean all angles of the four flat triangles formed by neighboring nodes: Recalling that any T 2 T h has
six nodes, three of them corresponding to the vertices and three located on the edges, we consider the three planar triangles
formed by a vertex and the nodes on the adjacent edges and the triangle formed by the nodes on the edges.

Whenever we refer to the velocity field we mean the finite element function
vm
h 2 ShðCm

h Þ; vm
i;k :¼

xm
i;k � xm�1

i;k

sm�1 :
The numerical error of convergence has been measured in the form
eocðF hÞ :¼ logðjF hð
ffiffiffi
2
p

eÞ � F hðeÞj=jF hðeÞ � F hðe=
ffiffiffi
2
p
ÞjÞ

logð
ffiffiffi
2
p
Þ

ð4:2Þ
and analogously for kV,h and kc,h.
Unless otherwise stated the time step has always been chosen to be sm K ðh0

minÞ
2 where h0

min is the initial minimal edge
length.

4.2. Helfrich flow

We first report on some consistency tests for elastic membranes without lateral phase separation, i.e. we set c � 1. The
gradient flow dynamics of the bending energy subject to constraints on area and volume but no area difference term
(a = 0) is commonly known as Helfrich flow. We relaxed some appropriate initial shapes and compared the energies in
the relaxed states with results from [38] where phase diagrams for various models of axisymmetric lipid bilayer vesicles
have been derived.

The scale invariance of the bending energy is an important issue since it reduces the number of effective parameters on
which the energetically most favorable state depends: Under a dilation of the space the energy FWðCÞ does not change. We
recall that the quantity
R ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A=4p

p

had been introduced as a reference length scale and is the radius of the sphere with surface area A :¼ A1 + A2. Equilibrium
shapes effectively only depend on the reduced volume
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V :¼ V=
4
3
pR3

� �
:

We remark that if C topologically is a sphere then V 2 ½0;1	 because the sphere minimizes the surface area among all sur-
faces of that topological type enclosing a given volume.

We employed an adaptive time stepping by setting
sm ¼ ðh0
minÞ

2

10R max
i
jvm�1

i;� j
where maxi2Nh
jv i;�j is the maximal node velocity, h0

min is the initial minimal edge length, and the length scale R is taken into
account for scale invariance. We remark that taking the minimal edge length at time tm instead of h0

min into account did not
essentially change the results of our simulations. The simulations were terminated when the maximal node velocity was
small enough, namely when
max
i2Nh

jv i;�j 6 R� 10�4:
The initial shapes and the data for the relaxed shapes are listed in Table 1. For V � 0:62 the discocyte shape has less en-
ergy than the dumbbell shape whilst for V � 0:79 the situation is vice versa. Also quantitatively the energies are close to the
values that have been computed in [38] with a different method restricted to axisymmetric shapes. Some final shapes includ-
ing cuts through symmetry planes are displayed in Fig. 1.

4.3. Convergence experiment

The goal is now to numerically investigate our method with respect to convergence as the mesh is refined and as e ? 0.
We chose a rotationally symmetric configuration and relaxed a cigar of length 4 and diameter 1 with spherical caps and with
symmetry axis fx ¼ ðx1; x2; x3ÞT 2 R3jx2 ¼ x3 ¼ 0:5g. Area and enclosed volume are given by A1 + A2 = 12.566356 and
V = 2.879785, respectively. We set a = 0 and x = 0.1. The initial data for the order parameter were set to
c0ðxÞ ¼
1 if 2:25 6 x1;

x1 � 1:25 if 0:25 6 x1 6 2:25;
�1 if x1 P 0:25;

8><>: where x ¼ ðx1; x2; x3ÞT 2 R3
and the area difference is given by A1 � A2 = 4.71. The initial configuration is displayed in Fig. 2 on the left. Simulations were
performed on grids with between 2306 and 36,866 nodes. The initial grids were obtained by glueing together four coarsely
triangulated surfaces of unit cubes, refining globally by bisection and projecting onto the surface. The following table lists the
maximal and minimal initial edge lengths h0

max and h0
min as well as the (constant) time step s = sm for all m:
Nh
flow, results for sev
en gently deformed
e phase diagram in
ed another simulat

l shape

soid (0.85,0.85,0.23
soid (0.7,0.7,0.2855
r (0.7,3.5)
r (0.7,2.1)
02306
eral initial shapes where the
towards prolates to initially
[38, Fig. 8], values have bee

ion on a finer grid resulting i

Nh

) 1538
) 1538

2818
1794
04610
parameters with the ellipsoid
comply with the constraints
n extracted for comparison.
n a normalized energy of 1.4

V

0.6211
0.7921
0.6211
0.7920
09218
s are the radii and with the c
on area and volume. Energies
For the prolate/dumbbell bra
045.

Final shape

Discocyte
Discocyte
Dumbbell
Dumbbell
18434
igars the diameter and the len
have been normalized by di
nch with V ¼ 0:7920 as in t

F h=ð8pÞ

1.9010
1.4717
1.9553
1.4046
36866
h0
max
0.143635
 0.092185
 0.076591
 0.047842
 0.039576
h0
min
0.046909
 0.036232
 0.023239
 0.018107
 0.011182
s/10�5
 10.0
 5.0
 2.5
 1.25
 0.625
Since close to equilibrium the relaxation is rather slow an adaptive time stepping procedure is desirable but the method
used in Section 4.2 on the pure Helfrich flow is not appropriate because of the contributions to the force coming from the line
energy and because of the equation for the order parameter. This issue is left for future research but we remark that we per-
formed simulations for various (constant) time steps indicating that the error from the time discretization is negligible com-
pared to the spatial discretization error.

Fig. 3 shows typical evolutions of the velocity and the Lagrange multipliers. Initially, the evolution is rather fast. Later on,
the quantities do not change any more in time, whence the system can be considered as relaxed. In Table 2 we present the
gth. The cigars
viding by 8pkH.
he last row we

[38]

1.9
1.5
1.95
1.4



Fig. 1. Final shapes for the ellipsoid/discocyte branch with V � 0:62 in the upper row and the prolate/dumbbell branch with V � 0:79 in the lower row. In
addition to the meshes, cuts through symmetry planes are displayed allowing for a qualitative comparison with shapes in [38, Fig. 9].

Fig. 2. Initial (left) and relaxed phase field surface (right, at time t = 0.3) for the convergences tests, here for e = 0.3 and Nh = 4610 nodes. The color/grey-
scale indicates the order parameter ranging from c = 1 (light red/grey), to c = �1 (dark blue/grey). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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values for energy, the mass and the volume Lagrange multiplier, the velocity and the grid quality for e = 0.3 measured at time
t = 0.3. As has been mentioned, the influence of the time step is small compared to the influence of the number of nodes Nh.
The values reveal convergence of F h; kc;h; kV ;h, and kvhkL2 ! 0 as Nh ?1.

Of further interest is the convergence as e ? 0. We kept the ratio e=
ffiffiffiffiffiffi
Nh
p

constant where the meshes are fine enough in the
sense that a further refinement has negligible influence on the values compared to the influence of e, i.e., the discretization
error is smaller than the modeling error. The values are shown in Table 3. Fig. 4 displays the evolution of the membrane en-
ergy and (parts of the) shape profiles around the necks obtained by intersecting the plane {x2 = 0.5} with the surface. As e ? 0
not only the energies converge but also the distance from one profile curve to the next one becomes smaller indicating that
the surface shapes converge. We observed this not only in the displayed region but everywhere. The reason for zooming into
this specific region is that the transition points marking the zero level sets of ch are displayed, too, and apparently converge.
This means that also the approximations to the interface locations converge as e ? 0.
4.4. Test of the adaptive local grid refinement

By our choice of the double-well potential W the profile of the order parameter across an interfacial layer is close to tanh
(d(x, t)/e) where d(x, t) is the geodesic distance of x to the level set {c(x, t) = 0}. If we define the interfacial layer to consist of
the points {jc(x)j 6 0.97} then the thickness of the layer is close to 4e. In our tests with the data of the previous section a value
of Nin = 1.6 resulted in meshes with resolutions of the interfaces comparable with the fully refined meshes yielding the val-
ues in Table 3. With respect to the bulk a value of NH = 0.5 resulted in a resolution of the phases comparable to the fully re-
fined mesh with Nh = 4610 nodes close to the spherical tips and somewhat coarser in the cone-shaped part of the red phase.
In Fig. 5 we compare the fully refined grid with the adaptively refined grid at time t = 0.3 for e ¼ 0:3=

ffiffiffi
2
p

. In Table 4 the ener-
gies and the node numbers of the relaxed shapes for several values of e are shown. The time step has been related to the
element diameters in the interfacial regions and, hence, is the same for a given e. Similarly as before our simulation results
generally suggest that the discretization error is smaller than the modeling error (influence of e).
4.5. Consistency with the phase diagram

We aimed for a quantitative comparison with the results in [32] for axisymmetric vesicles without area-difference term
(a = 0) but with a lateral phase separation. As initial data we chose prolate-like ellipsoids centered in the origin, symmetric
with respect to the axis fx ¼ ðx1; x2; x3Þ 2 R3jx1 ¼ x2 ¼ 0g, with pronounced tips in x3-direction and with appropriate radii to



Fig. 3. Relaxation of cigars with two phases. For e = 0.3 on the mesh with Nh = 4610 nodes we display the evolution of kvhkL2ðCh Þ
and kvhkL1ðChÞ on the left

and the evolution of the Lagrange multipliers on the right.

Table 3
Convergence tests with cigars relaxing to non-symmetric dumbbells as in Fig. 2, values at time t = 0.3 and experimental errors of convergence computed
according to (4.2).

e Nh F h eoc kc,h eoc kV,h eoc

0.3 04610 49.8933 – �0.4399 – 17.5725 –

0:3=
ffiffiffi
2
p

09218 49.8104 1.2511 �0.4598 1.5139 17.5797 1.1018

0.15 18434 49.7567 1.6448 �0.4716 1.7940 17.5845 2.3746

0:15=
ffiffiffi
2
p

36866 49.7262 – �0.4779 – 17.5867 –

Table 2
Convergence tests with cigars relaxing to non-symmetric dumbbells as in Fig. 2, values at time t = 0.3 for e = 0.3.

Nh F h kc,h kV,h kvhkL2ðChÞ q

02306 49.898116 �0.440981 17.568521 0.01961168 0.435407
04610 49.893313 �0.439833 17.572988 0.00844491 0.430948
09218 49.892998 �0.439936 17.572570 0.00556093 0.426217
18434 49.892651 �0.439907 17.572540 0.00165041 0.424645

Fig. 4. Relaxation of cigars with two phases. On the left: evolution of the membrane energy F h for different values of e. On the right: shape profiles as in
Fig. 2 (right) around the necks with the phase transition region for several values of e; we display the distance in the x3-direction of the surface to the
symmetry axis {x2 = x3 = 0.5} and the position of the phase interface characterized by ch = 0; we remark that the axes scale differently.

C.M. Elliott, B. Stinner / Journal of Computational Physics 229 (2010) 6585–6612 6605



Fig. 5. Parts of the meshes of relaxed shapes for the test data in Section 4.3 with e ¼ 0:3=
ffiffiffi
2
p

, fully refined mesh with Nh = 9218 nodes (left) in comparison
with the adaptively refined mesh with Nh = 6114 nodes (right).
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fulfill the constraint on the given reduced volume V (recall Section 4.2 for its definition; the characteristic length scales R
were about 1.9). The initial values for the order parameter where of the form
Table 4
Compar
(with s

e

0.3

0:3=
0.15

0:15
0.07
c0ðxÞ ¼
1 if pþ 0:25 6 x3;

4ðx3 � pÞ if p� 0:25 6 x3 6 pþ 0:25;
�1 if x3 6 p� 0:25;

8><>:

where x ¼ ðx1; x2; x3ÞT 2 R3 with an appropriate value p for the height of the interface such that the first phase occupies a
tenth of the total domain, A1/(A1 + A2) = 0.1. Further, we set x = 0.1. The computations have been carried out with adaptive
mesh refinement and the results are displayed in Table 5 revealing a good agreement with the values in [32].

4.6. Effects from the non-local bending energy

We now present a computational example that demonstrates the effectivity of our method for non-axisymmetric shapes.
The initial shape shown in Fig. 6 on the left has a minimal edge length of h0

min � 0:055 and the all simulations have been car-
ried out with a fixed time step of s = 4.0 � 10�5.

Neglecting any phase separation phenomena we first relaxed the initial shape under the Helfrich flow with area-differ-
ence term (a = 100). The resulting shape is non-axisymmetric and shown in Fig. 6 on the right which qualitatively is in agree-
ment with the results in [41].

In turn, when relaxing the same shape without the area-difference term (a = 0) then the resulting shape is axisymmetric
again but involves an unphysical self-intersection. In Fig. 7 we display some shapes during the relaxation.

Finally we took a phase separation with an initial field c0 into account that involved a red phase at one of the tips and blue
phases elsewhere, see Fig. 8 on the left for the initial shape with order parameter and on the right for the relaxed shape.
Apart from additional parameters for the phase separation the simulation parameters were the same as before in Fig. 6.
As expected, the energy associated with the phase interface leads to a more pronounced neck between the tip with the
red phase and the remainder of the vesicle in the blue phase.

4.7. Two-phase discocytes

We investigate the effect of a phase separation on a discocyte shape as in Fig. 1 (top). The initial configuration is displayed
in Fig. 9 on the top which is a discocyte centered at the origin and with symmetry axis fð0; 0; zÞ 2 R3jz 2 Rg. The initial values
for the order parameter were of the form
c0ðxÞ ¼
1 if 0:4 6 x3;

5x0 � 1 if 0:0 6 x3 6 0:4;
�1 if x3 6 0:0;

8><>: where x ¼ ðx1; x2; x3ÞT 2 R3:
The simulation data is shown in the caption to Fig. 9. In particular, the reduced volume is V � 0:6297.
ison of numbers of nodes, energy, and Lagrange multipliers for the volume constraint in dependence of e for the fully and adaptively refined meshes
trategy (Nin,Noff,NH) = (1.6,0.1,0.5)), test problem as described in Section 4.3, values measured at time at time t = 0.3.

Fully refined mesh Adaptively refined mesh

Nh F h kV,h Nh F h kV,h

04610 49.893313 17.572988 03698 49.893365 17.573109ffiffiffi
2
p

09218 49.810412 17.579676 06114 49.809644 17.580724

18434 49.756678 17.584547 06786 49.756712 17.584635

=
ffiffiffi
2
p

36866 49.726291 17.586686 09850 49.725234 17.586805

5 – – – 09914 49.708009 17.585037



Table 5
Quantitative comparison between the energies extracted from the phase diagram in Section II.B.2 on p. 2676 in [32] and the energies measured with our
method. In the last row the result for a larger e than in the third row but the same parameters otherwise reveals a bigger energy. In the test example in Section
4.3 we had already observed that decreasing e leads to decay of the energy, cf. Table 3.

red. vol. Extracted F h=ð8pÞ e

0.95 2.22 2.222 0.1
0.91 2.175 2.177 0.1
0.90 2.155 2.157 0.1
0.89 2.11 2.124 0.1
0.90 2.155 2.1614 0.15

Fig. 6. Initial (left) and relaxed (right) shape for the Helfrich flow with weak area-difference constraint (a = 100, c � 1). Simulation parameters are
V ¼ 8:513298;A1 þ A2 ¼ 33:931229;A1 � A2 ¼ �23:6;M0 ¼ m0R ¼ 69:0, and we set kH = 1.0. The length scale is R � 1:643 and the reduced volume
V � 0:458. At the end time t = 2.0 we had Nh = 4170 grid points and a total energy of F h � 81:752518 with a main contribution of F h

W � 81:749575 from the
bending energy and a small contribution of F h

M � 0:002943 from the area-difference term.

Fig. 7. Relaxation of the initial shape in Fig. 6 (left) subject to Helfrich flow (a = 0, c � 1). The shapes are displayed at times t = 0.2 (upper left, very similar to
the relaxed shape with a = 100, see Fig. 6 on the right), t = 0.4 (upper right, revealing already a self-intersection), and t = 1.0 (lower left, axisymmetric
relaxed shape), and on the lower right we show a cut through the middle of the shape at time t = 0.5 more clearly revealing a self-intersection. Simulation
parameters are V = 8.513298, A1 + A2 = 33.931229, and we set kH = 1.0. The length scale is R � 1:643 and the reduced volume V � 0:458.

Fig. 8. Initial (left) and relaxed (right) shape for membrane energy with phase separation and area-difference constraint (a = 100). Simulation parameters
are V ¼ 8:513298;A1 þ A2 ¼ 33:931229;A1 � A2 ¼ �23:6;M0 ¼ m0R ¼ 69:0, and we set r = 2, kH = 1, x = 0.02, e = 0.4. The length scale is R � 1:643 and the
reduced volume V � 0:458. At the end time t = 2.0 we had Nh = 4746 grid points, and energy contributions of F h

W � 83:171314;F h
GL � 6:373348, and

F h
M � 0:001882. The color/grey-scale indicates the order parameter ranging from c = 1 (light red/grey) to c = �1 (dark blue/grey). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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As r is increased from zero the equilibrium discocyte is deformed maintaining some non-convex portions. For instance,
the relaxed shape for r = 3 in Fig. 9 in the middle still reveals dents. However if r is increased to r = 3.45 then the dents
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vanish and the final shape is an axisymmetric dumbbell shape but with a different symmetry axis to that of the initial dis-
cocyte, namely fðx;0;0Þ 2 R3jx 2 Rg, see Fig. 9 on the bottom.

For comparison we also performed simulations with cigar-like initial shapes and the same simulation parameters. In this
range (recall that V � 0:6297) we know from Section 4.2 that shapes belonging to the oblate/discocyte branch energetically
are favorable, hence we expect this to hold for small r. In Fig. 10 we show plots of the energies of the relaxed shapes over r
where we obtain the dashed curve when relaxing an initial cigar shape and the continuous curve when relaxing the disco-
cyte. The latter one indeed reveals less energy for r up to about 0.8. After that, the shapes belonging to the prolate/dumbbell
branch have less energy, and for r P 3.45 the discocytes also relax to shapes of this branch. That we obtain two-phase dis-
cocytes as in the middle of Fig. 9 for r between 0.8 and 3.45 indicates that these shapes are local minimizers of the mem-
brane energy since the relaxation method ensures that the energy decays.

4.8. Topological changes of the phase separation

In the previous example it was mainly the initial membrane shape which lead to different relaxed shapes for the same
parameters. We now consider an example where such an effect is due to the initial location of the interphase boundary.
Fig. 9. Relaxation of a discocyte with phase separation. From top to bottom: initial shape and final shapes for r = 3, 4 a time t = 0.03 on the left, on the right
the corresponding cross-sections through the plane fx 2 R3jx1 ¼ 0g. Further simulation parameters are V = 0.179394, A1 + A2 = 2.093816, A1 � A2 =
�0.917461, a = 0,kH = 1, x = 0.02,e = 0.1. The length scale is R � 0:408 and the reduced volume V � 0:6297. The color/grey-scale indicates the order
parameter ranging from c = 1 (light red/grey) to c = �1 (dark blue/grey). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Energies of relaxed two-phase membranes from the oblate/discocyte branch (cf. Fig. 9) versus the prolate/dumbbell branch (cf. Fig. 2) plotted over
r. Parameters are V = 0.179394, A1 + A2 = 2.093816, A1 � A2 = �0.917461, a = 0,kH = 1, e = 0.1. The length scale is R � 0:408 and the reduced volume
V � 0:6297.
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We consider cigar-like shapes. The domain of one phase is an annular region around its cylindrical portion but the heights
are different, see Figs. 11 and 12 on the left. The simulation parameters are given in the captions of these Figures and are
identical for the two simulations.

For the higher positioned phase interfaces of Fig. 11 we observe that the dark blue/grey phase detects the tip and moves
there resulting in two connected inter-membrane phases and a total energy of F h � 52:1334. In turn, the two light red/grey
domains remain separated by the annular dark blue/grey domain of the other phase when the phase interfaces initially are
positioned further away from the upper tip, see Fig. 12. The final energy in the latter case is F h � 55:145 and bigger than in
Fig. 11. Relaxation of a cigar-like initial shape with two circular phase interfaces, on the left at time t = 0.0, in the middle at time t = 0.000075 and on the
right the relaxed shape a time t = 0.005. Further simulation parameters are V = 0.307931, A1 + A2 = 3.013179, A1 � A2 = 1.36198, a = 0, kH = 1, r = 2,x = 0.001,
e = 0.05. The length scale is R � 0:4897 and the reduced volume V � 0:6261. The color/grey-scale indicates the order parameter ranging from c = 1 (light red/
grey) to c = �1 (dark blue/grey). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Relaxation of a cigar-like initial shape with two circular phase interfaces, on the left at time t = 0.0, in the middle at time t = 0.00025 and on the right
the relaxed shape a time t = 0.005. Further simulation parameters are V = 0.307931, A1 + A2 = 3.013179, A1 � A2 = 1.36198, a = 0, kH = 1, r = 2, x = 0.001,
e = 0.05. The length scale is R � 0:4897 and the reduced volume V � 0:6261. The color/grey-scale indicates the order parameter ranging from c = 1 (light red/
grey) to c = �1 (dark blue/grey). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the previous case because the phase interface has approximately twice the length. In fact, the line energy of the relaxed
shape in Fig. 12 on the right is F h

GL � 6:4135 whilst the shape in Fig. 11 on the right involves a line energy of F h
GL � 3:3271.
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Appendix A. Notation and concepts

A.1. Calculus on evolving surfaces

To represent membranes we consider smooth oriented two-dimensional hypersurfaces C � R3 which have non-empty
smooth boundaries oC and which can be parameterized by maps y :M! C over two-dimensional reference manifolds
M. To fix the orientation let m denote a unit normal field on C. Later on we will consider surfaces that are the boundary
of a domain X � R3 and then m will be the external unit normal. Here, we just pick any orientation. Further, let l denote
the outer co-normal of C on oC.

To discuss the surface gradient we may consider a fixed surface C. For any function g defined on a neighborhood of
N � R3 of C we define its tangential gradient on C by
rCg :¼ rg�rg � mm
where � denotes the standard scalar product andrg denotes the usual gradient on R3. The tangential gradientrCg only de-
pends on the values of g restricted to C, and rCg � m = 0. The components of the tangential gradient will be denoted by
rCg ¼ ðDigÞ3i¼1: If w : C! R3 is a smooth vector field thenrCw is the matrix with components (rCw)ij = Djwi, and we write
(rCw)T = (Diwj)i,j for its transpose and use the scalar product rCw : rCz ¼

P
i;jDjwiDjzi. We will furthermore use the nota-

tion w � z for the matrix with entries wizj. The surface divergence is defined by rC �w = tr(rCw). The Laplace–Beltrami
operator on C(t) is defined as the tangential divergence of the tangential gradient, DCg =rC � rCg.

At a point x 2 C we define the matrix PðxÞ :¼ I � mðxÞ � mðxÞ 2 R3�3 where I is the identity matrix. Any vector y 2 R3 is
projected by P to the tangent space TxC. With the help of P we can write
rCg ¼ Prg; rCw ¼ rwP; rC �w ¼ P : rCw: ðA:1Þ
Let IC : C! C; ICðxÞ ¼ x for all x 2 C, denote the identity map on surface C. Throughout this paper we will usually simply
write x for the identity map on (the actual surface) C. After extending IC to N , the identities rIC ¼ rx ¼ I and (A.1) yield
that rCx =rxP = P = I � m � m.

The mean curvature of C with respect to m is defined by
H ¼ rC � m: ðA:2Þ
Observe that the orientation is such that if C is the boundary of a ball of radius R and m its external unit normal then its mean
curvature is H ¼ 2

R. Note that H is the sum of the principle curvatures rather than the arithmetic mean and hence differs from
the common definition by a factor 2. We remark that the mean curvature vector H = Hm is invariant with respect to the ori-
entation of m, and the identity (1.8) follows from
DCx ¼ rC � rCx ¼ rC � P ¼ �rC � mm ¼ �Hm:
As observed by Dziuk [17,18], the following variational identity is useful in defining numerical schemes and in the varia-
tional calculus:

Definition A. 1 (Variational curvature equation). For a smooth closed surface C with mean curvature H the following weak
equation holds for the identity map
Z

C
H � z �rCx : rCz ¼ 0 ðA:3Þ
for each test vector field z : C! R3.
For each surface C(�), the symmetric matrix rCm of the tangential derivatives of the normal field is known as the Wein-

garten map or shape operator. It satisfies jrCmj2 ¼ H2
1 þ H2

2 ¼ H2 � 2K where Hi are the principle curvatures, H = H1 + H2 and
K = H1H2 is the Gaussian curvature.

There is a formula for partial integration:
Z
C
rCg ¼

Z
C
gHm þ

Z
@C

gl: ðA:4Þ
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Let us write c for a smooth curve on C or the boundary of C and let sc denote the unit tangential field along c such that
(sc,l,m) constitutes a positively oriented orthonormal basis in every point on c. The notation rcf stands for the derivative
of a field f : c! R along c: Using a parameterization r(s) for curve c we have that
rcf ¼ 1
j@srðsÞj

@sðf � rÞðsÞsc:
The curvature vector of c is denoted by h and fulfills
h ¼ 1
j@srðsÞj

@s
@srðsÞ
j@srðsÞj

� �
: ðA:5Þ
It is normal to the curve whence we may write
h ¼ hglþ hmm:
The quantity hg = h � l is the geodesic curvature of c and hm = h � m is usually called normal curvature (with respect to C).

A.2. The material derivative and transport formulae

Relaxing an initial surface by deforming it leads to the notion of an evolving surface {C(t)}t depending smoothly on the
time t 2 I :¼ [0,1), i.e., the parameterizations yð�; tÞ :M! CðtÞ depend smoothly on t. We define the velocity of C(t) in a
point y(p, t) with p 2M by
vð�; tÞ : CðtÞ ! R3; vðyðp; tÞ; tÞ :¼ d
dt

yðp; tÞ:
Interpreting y(p, t) as a mass point the velocity vector field may be understood as the material velocity. In general, one can
decompose the velocity into the form v = vmm + vs with a scalar normal component vm :¼ v � m and a tangential vector field
vs :¼ v � vmm.

We will usually omit the dependence of fields and surfaces on t since it is clear from the context whether we deal with the
evolving surface or a surface at a specific time. In particular, we just write rC for rC(t) whence this operator contains only
spatial derivatives but no time derivatives.

By @�t we denote the material derivative of a scalar function g = g(x, t) defined on an open set around the moving surface,
@�t g ¼

@g
@t þ v � rg. Recalling the parameterizations y(t) we note that
@�t gðyðtÞ; tÞ ¼
d
dt

gðyð�Þ; �Þjt ¼ @tgðyðtÞ; tÞ þ vðyðtÞ; tÞ � rgðyðtÞ; tÞ ðA:6Þ
from which we see that the material derivative depends only on the values of g on the surface C(t). Occasionally we will also
use the normal time derivative where only the normal portion of the velocity is taken into account:
@�t gðyðtÞ; tÞ ¼ @tgðyðtÞ; tÞ þ vmðyðtÞ; tÞ
@g
@m
ðyðtÞ; tÞ: ðA:7Þ
In the problem that we will consider later on the velocity field is purely normal, and in this case material derivative and nor-
mal time derivative coincide. In the general case, a consequence of the splitting of v into a normal and a tangential part is the
relation @�t g ¼ @

�
t gþ vs � rCg. It is convenient to note that with (A.2) we obtain
rC � v ¼ rC � ðvmmÞ þ rC � vs ¼ vmrC � m þrC � vs ¼ vmH þrC � vs: ðA:8Þ
The following formulae for the differentiation of a parameter dependent surface integral will play a decisive role.

Lemma A.2 (Transport formulae). Let {C(t)}t2I be an evolving surface and g, w be smooth scalar fields on C such that all the
following integrals exist. Then
d
dt

Z
C
g ¼

Z
C
@�t gþ grC � v
	 


: ðA:9Þ
Further, with the rate of deformation tensor DðvÞij ¼ 1
2 ðDiv j þ Djv iÞ ði; j ¼ 1; . . . ;nÞ,
d
dt

Z
C
rCg � rCw ¼

Z
C
rCw � rC@

�
t gþ

Z
C
rC@

�
t w � rCgþ

Z
C
rCg � ðrC � v � 2DðvÞÞrCw: ðA:10Þ
A proof of this Lemma is given in [19].

Later on we will apply (A.10) with g and w replaced by the components of the vector field x and another vector field z,
respectively. Then we will also apply the following identity which is derived using (A.1) and that P =rCx is symmetric (here,
the summation convention is employed):
rCxi � 2DðvÞrCzi ¼ DjxiDjvkDkzi þ DjxiDkv jDkzi ¼ DkziDjvkDixj þ DixjDkziDkv j

¼ ððrCzÞTÞkiðrCvrCxÞki þ ðrCxrCzÞjkðrCvÞjk ¼ ðrCzÞT : rCv þ PrCz : rCv : ðA:11Þ
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Further useful formulae for time derivatives of the unit normal are
@�t m ¼ �rCðv � mÞ ¼ �rCvm ; @�t m ¼ �ðrCvÞTm: ðA:12Þ
For the first identity we refer to [26]. The second one follows from the first one and the fact that rCm is tangential and
symmetric:
@�t m ¼ @
�
t m þrCmvs ¼ �rCðv � mÞ þ rCmv ¼ �ðrCvÞTm � ðrCmÞTv þ ðrCmÞTv :
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